
1. Introduction and Motivation
Understanding the sensitivity of simulations to parameter values is an important step in determining the 
uncertainty in simulations using numerical models, such as the Weather Research and Forecasting (WRF) 
model (Skamarock et al., 2008). The uncertainty introduced by the boundary-layer parameterization is par-
ticularly important for wind energy applications and has been the topic of a series of studies focused on the 
Pacific Northwest of the United States (Berg et al., 2019; Yang, Berg, et al., 2019; Yang, Qian, et al., 2017). 
The work of Yang et al. (2017) delved into the parametric sensitivity of the Mellor-Yamada-Nakanishi-Niino 

Abstract The Mellor-Yamada-Nakanishi-Niino (MYNN) parameterization applied in the Weather 
Research and Forecasting (WRF) model has been augmented to include the Eddy-Diffusion Mass-Flux 
(EDMF) approach to better represent transport by boundary-layer eddies. This change includes the 
addition of new parameters associated with convective updrafts and boundary-layer clouds that lead 
to new parametric sensitivities in the turbine-height wind speed compared to simulations using the 
standard MYNN parameterization. This work builds on efforts focused on WRF's MYNN parameterization 
by examining the sensitivity of wind speed to parameters in the MYNN-EDMF parameterization as a 
function of simulation duration. Summer and winter periods were selected from the second Wind Forecast 
Improvement Project (WFIP2). Five sets of simulations were completed for each season, with durations 
ranging from 2 to 6 days. The results show that the sensitivity to the new parameters associated with the 
EDMF scheme is generally small compared to other parameters in clear conditions, but the sensitivity 
to the entrainment becomes significant when the updraft fraction is large. The spread in the perturbed 
parameter ensembles was found to grow quickly over the first 8–19 h in the summer simulations and 
17–24 h in the winter simulations with little change after that, regardless of the simulation length. A 
strong diurnal cycle in the parameter sensitivity was also found associated with the atmospheric stability, 
as well as an increase in the sensitivity to the entrainment parameter used in the EDMF parameterization 
that is associated with increasing fractional area covered by plumes.

Plain Language Summary Atmospheric models, such as the WRF model, use mathematical 
representations to account for turbulence near the surface. These treatments are constantly evolving and 
have recently been modified to combine two different approaches, one part focused on small scale eddies 
and a second part to treat large eddies that span much of the planetary boundary layer. This treatment 
involves a number of parameters whose values are highly uncertain. The goal of this study is to examine 
the impact of parameter uncertainty on the simulated turbine-height wind speed for two periods, summer 
and winter, from a recent field study. In addition, the study was designed to test the parametric sensitivity 
of the turbine-height wind speed to simulation duration. We show that parameters associated with the 
treatment of large eddies are generally small compared to the other parameters, but becomes significant in 
daytime cases. The spread of the simulation ensemble grows quickly in the first 19–24 h of the simulation, 
but changes little after that, regardless of the duration. The analysis also investigates how the parametric 
sensitivity changes between stable and unstable conditions as different treatments are used in the 
parameterization for different stabilities.
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(MYNN) (Nakanish, 2001; Nakanishi & Niino, 2004, 2006, 2009) and found that much of the spread in 
an ensemble of simulations can be attributed to a relatively small number of parameters in their summer 
case study. This work was augmented by Berg et al. (2019) to include analysis of both summer and winter 
conditions over the same region. Yang et al.  (2019) extended the work further to include both the Yon-
sei University and MYNN parameterizations in a study of both parametric and structural uncertainty in 
WRF simulations. Other studies (e.g., Banks et al., 2016; Carvalho et al., 2012; Constantinescu et al., 2011; 
Fernández-González et al., 2018; Smith & Ancell, 2019) have also examined structural uncertainty associat-
ed with the parameterizations used in WRF or the impact of uncertainty in initial and boundary conditions 
of WRF for wind energy applications.

Recently, the MYNN parameterization has been augmented to include Eddy-Diffusion Mass-Flux (EDMF) 
in the WRF model (Olson, Kenyon, Angevine, et al., 2019) to better represent vertical transport associated 
with large boundary layer eddies. This implementation includes multiple subgrid plumes, with the number 
of plumes determined dynamically based on surface and boundary layer properties. Subgrid cloud fraction 
in this implementation is based on the subgrid cloud probability density function following Sommeria and 
Deardorff  (1977). The EDMF approach was designed to improve the representation of local and non-lo-
cal transport in both clear and cloudy boundary layers (e.g., Angevine, 2005; Angevine et al., 2010; Neg-
gers, 2009; Neggers et al., 2009; Siebesma et al., 2007; Soares et al., 2004; Sušelj et al., 2012; Tan et al., 2018). 
In their analysis of results from the NOAA High-Resolution Rapid Refresh (HRRR) model, Olson, Kenyon, 
Djalalova, et al. (2019) found significant improvements in the forecast of turbine-height wind speed using 
the MYNN-EDMF parameterization (among other model changes) compared to the default MYNN param-
eterization for tests during the second Wind Forecast Improvement Project (WFIP2).

Other studies have examined the parametric sensitivity in the EDMF parameterization outside of the WRF 
implementation used here. Suselj et al. (2020) examined the sensitivity of the Jet Propulsion Laboratory 
version of the EDMF parameterization and found strong sensitivity to the entrainment in the mass-flux part 
of the parameterization for case studies with boundary layer clouds. Langhans et al. (2019) also looked at 
the parametric sensitivity of the EDMF parameterization in a single column model and found sensitivity to 
the plume entrainment and the initial plume properties.

In this study, we build on earlier work to extend the sensitivity study to include the new MYNN-EDMF 
parameterization. We investigate how the sensitivity changes as a function of simulation duration and we 
focus on the time evolution of the turbine-height wind speed rather than monthly means. While a large 
number of studies have examined the sensitivity of model results with forecast lead time (e.g., Ancell, 2016; 
Etherton & Santos, 2008; Fernández-González et al., 2017), only a small number of studies have examined 
the parametric uncertainty as a function of forecast lead time. Di et al. (2015) found that, in general, the 
parameters that explain the variability of convective storms were independent of forecast lead time. In 
contrast, Xu et al. (2020) found some sensitivity to lead time for variables above 850 mb, but there was less 
sensitivity close to the surface.

The manuscript is arranged as follows. The second section provides a description of the WRF model as used 
in this study, describes the experimental configuration and the parameters that were selected, and briefly 
describes the sensitivity analysis approach. The third section provides a brief description of WFIP2 data 
sets used to evaluate model performance for the summer and winter cases. The fourth section presents the 
results as a function of simulation period and time of day.

2. Model Configuration, Parameter Selection, and Sensitivity Analysis 
Approach
The Advanced Research WRF model version 3.9 is used (Skamarock et al., 2008) in this study. The single 
model domain covers the northwestern United States and includes the WFIP2 study domain (Figure 1). 
The model domain is configured with horizontal grid spacing of 3 km and has 380 and 350 grid points in 
the east-west and north-south directions, respectively, and 55 vertical layers. The vertical grid spacing is ap-
proximately 15 m within 200 m of the surface and 10 to 28 model layers are generally found in the planetary 
boundary layer (PBL).
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A standard set of model physics is used in all simulations shown in this study. The PBL and shallow con-
vective processes are represented by the MYNN-EDMF PBL scheme (Nakanishi & Niino, 2006, 2009; Ol-
son, Kenyon, Angevine, et al., 2019). Other model physics include the MYNN surface layer scheme (Dyer 
& Hicks, 1970), Rapid Radiative Transfer Model (Iacono et al., 2008) long-wave and short-wave radiation 
schemes, and the aerosol-aware Thompson microphysics scheme (Thompson & Eidhammer, 2014; Thomp-
son et al., 2008). The Rapid Update Cycle land surface model (Smirnova, Brown, & Benjamin, 1997; Smirno-
va, Brown, Benjamin, & Kenyon,  2016; Smirnova, Brown, Benjamin, & Kim,  2000) is used to represent 
surface processes. Boundary and initial conditions are from the North American Regional Reanalysis 
(Mesinger et al., 2006).

This particular study was designed to investigate the sensitivity to 11 parameters as a function of simulation 
duration for two periods selected from WFIP2, one in summer and one in winter. Perturbed parameters en-
sembles (PPEs), each with 128 members, were generated using the quasi-Monte Carlo sampling approach 
(Caflisch, 1998) for simulations with durations ranging from two to six days with a common end date for 
each season; August 24, 2016, and January 17, 2017. The application of this technique is to achieve better 
dispersion of the parameter selections compared to random or pseudorandom approaches. The selection of 
different seasons is designed to allow for the examination of the parameter sensitivity in both unstable and 
stable conditions.

Previous studies (Berg et  al.,  2019; Yang, Qian, et  al.,  2017) focused on the sensitivity of simulated tur-
bine-height (taken to be 80  m above the surface) wind speed to parameter values used in the standard 
MYNN parameterization. They found the greatest sensitivity to Turbulence Kinetic Energy (TKE) dissi-
pation rate (B1), turbulent Prandtl number (Pr), factors associated with turbulence length scales applied 
within the MYNN parameterization (α1, α4, α5, and β), surface roughness (represented by the scaling fac-
tor, ZF, that is applied to the standard representation of surface roughness), and the von Karman constant 
(K). These parameters are carried into the present study, but three additional parameters associated with 
the EDMF parameterization are also included. These new parameters, cσ, αconv, and cε, are associated with 
the properties of convective plumes and the treatment of boundary layer cloud fraction within the model 
grid cell. Other parameters could be tested as well, but this subset is consistent with the results of Suselj 
et al. (2020), who found strong sensitivity to the entrainment. Values for the various parameters were based 
on values that have appeared in the literature, or in cases where additional information is not available in-
creased or decreased by approximately a factor of two, and are listed in Table 1.
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Figure 1. Model domain (white) with terrain elevation indicated by colors. Symbols indicate WFIP2 sodar (black 
circle) and lidar (red squares) locations.
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Within the MYNN-EMDF parameterization implemented in WRF (Olson, Kenyon, Angevine, et al., 2019) 
the entrainment in individual plumes is defined as a function that is inversely proportional to the updraft 
speed and the plume size (Tian & Kuang, 2016):

  ,i
i i

c
w d (1)

where w and d are the updraft speed and plume diameter, respectively and i indicates the specific updraft. 
Tian and Kuang (2016) suggested a value of 0.46 m s−1, but they note that this value is determined empir-
ically and may vary with the TKE and is set to 0.5 or 0.35 depending on the version of the WRF model. In 
this study, it is allowed to range between 0.3 and 0.9. The cloud fraction in the parameterization is defined in 
terms of the distribution of the saturation deficit (s) as described by Chaboureau and Bechtold (2002, 2005) 
and Olson, Kenyon, Angevine, et al. (2019). The variability of s for stratus is defined as:

 

                

1/222
2

2
2 ,t l t l

s strat
pm pm

q ab h q b hc l a
z c z z zc

 (2)

where a and b are thermodynamic functions, l is the mixing length determined in the turbulence parame-
terization, hl is the grid-box moist static energy, qt is the total water mixing ratio, z is the height, cpm is the 
specific heat capacity of moist air, and cσ is a constant. The default value of cσ applied in WRF is 0.225, while 
a value of 0.2 was suggested by Chaboureau and Bechtold (2002) and its value is allowed to range over 0.2 to 
0.25 here. The expression for the variability of s for convective clouds is defined in terms of the cloud mass 
flux, M, and a vertical scaling function taken to be α−1:

  
  1,s conv convMa (3)

where αconv is a proportionality constant that was originally assumed to be 5 × 10−3, but is allowed to range 
between 3 × 10−3 and 12 × 10−3 in this study. The values of the variability of the saturation deficits are com-
bined to estimate the cloud fractional area, as described by Olson, Kenyon, Angevine, et al. (2019).

3. Data Sets and Weather Conditions
Data used in this study include lidar and sodar observations collected during WFIP2 (Shaw et al., 2019) and 
details of the field deployment can be found in Wilczak et al. (2019). A number of different sodar makes 
and models were used, including Scintec MFAS and SFAS, Triton Wind Profiler, Atmospheric Sciences 
Corporation MiniSodar, and custom built sodars deployed by Argonne National Laboratory. The maximum 
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Note. Shaded areas indicate parameters associated with the EMDF representation.

Table 1 
Parameter Names, Physical Meaning, Default Value and Range Applied in This Study
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range of sodars varied between approximately 200 and 400 m, depending on the sodar type and atmospheric 
conditions. In addition, the overall quality of the sodar data was much better in summer than during winter. 
Lidar data were collected using several different systems, including: WindCube V1 and V2 profilers, Wind-
Cube 200s, ZephIR Profiler. In contrast to the sodars, the quality of the lidar data was generally independent 
of season (Pichugina, Banta, Bonin, et al., 2019). In this analysis, hourly domain averages and standard 
deviations of turbine-height wind speed (assumed to be 80 m above the surface) were computed using all 
good data from the sodars and lidars at that given hour. In total data from 9 sodars and 6 lidars were used to 
compute the summertime values, and data from 4 sodars and 4 lidars were used to compute the wintertime 
values. There was generally good agreement between the measurements from the two different systems 
(not shown).

A detailed event log was developed during WFIP2 that includes descriptions of weather events and classi-
fies the meteorological conditions on given days based on the analysis of scientists working on the project 
team (https://a2e.energy.gov/data/wfip2/log.z01.00). Two periods were selected for this study to cover a 
range of different stabilities as well as relatively strong and weak winds. The summer period (August 18 
through 24, 2016) was marked with cross barrier winds over the Cascade Range driven by synoptic scale 
flow and thermal differences between the coast and the Columbia Basin (Banta et al., 2020). This period 
includes days with domain average turbine-height wind speeds ranging from approximately 2 to 14 m s−1 
(Figure 2). The winter period (January 11 through 17, 2017) was marked by a frontal passage at the start 
of the period and the presence of cold pools during which cold air was trapped in the basin, periods with 
easterly flow, and generally weaker domain averaged winds that were less than 6 m s−1 for much of the 
simulation period (Figure 2), as highlighted by McCaffrey et al. (2019), Bianco et al. (2019), and Pichugina 
et al. (2020). The diurnal cycle was significantly muted during the winter period, which is typical for cold 
pool cases.
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Figure 2. Time series of observed mean (black line) and standard deviation (gray shading) of turbine-height wind speed computed across sodar and lidar 
locations as well as time series of the simulated range between the 2.5 and 97.5 percentile of PPE member means (blue and orange shading—the mean over the 
entire PPE falls in the center of the shaded area) and standard deviation of the PPE mean (dashed lines) at the points in the domain with valid sodar or lidar 
measurements for various simulation durations in summer. Blue indicates the simulation conducted over the entire six-day period, and orange indicates shorter 
simulations with the orange dot indicating the start of the simulation period for cases with 2-, 3-, 4-, and 5-days duration.

https://a2e.energy.gov/data/wfip2/log.z01.00
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4. Results
4.1. Comparison of Model Results With WFIP2 Data

The overall performance of the PPEs can be evaluated using observations from the sodars and lidars de-
ployed during WFIP2. During the summer (Figure 2) there is generally good agreement between the aver-
age observed turbine-height wind speed and the range of simulated values (averaged over WRF grid points 
closest to the observation sites) from the PPE means. The magnitude, but not the timing, of the wind ramp 
event on August 19 is well captured, but the wind speed increase in the simulations from August 21 through 
22 is smaller and is simulated to occur later than observed. The overall good agreement in wind speed when 
averaged across the measurement locations is likely due to the capture of the key synoptic scale features 
in the reanalysis data used to drive the simulations and the high quality of data from the sodars and lidars 
during the summer. The inter-member spread of the mean wind speed across all sites is generally quite 
small, as indicated by the blue shading for the simulation with 6 days duration and orange shading for 
simulations with 2, 3, 4, and 5 days duration in Figure 2, which represents the spread between the 2.5 and 
97.5 percentiles of the PPE members. The standard deviation across all sites from the PPE mean is generally 
similar to the standard deviation of the observations (Figure 2). The good agreement between the standard 
deviations indicates that the simulation ensemble is able to capture the variability seen across the measure-
ment locations.

The agreement between the simulated and observed turbine-height wind speed in the winter is better in the 
first half of the analysis period (through approximately January 14, Figure 3). Through January 12 the vari-
ability in the PPE means is almost as large as the observed standard deviation. Later in the period, however, 
the variance of the PPE increases, while the range of the PPE means is much smaller. The large values of 
wind speed on January 11 are associated with the passage of a cold front, as described in the WFIP2 event 
log. After the frontal passage, a cold pool set up over the Columbia Basin. During the cold pool, near-surface 
wind speeds were generally weak and the simulated wind speed was greater than observed. This behav-
ior could be related to issues with the reanalysis, including initialization of the cold pools as well as the 
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Figure 3. Same as Figure 2 but for the winter case.
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well-documented issues associated with simulating cold pool evolution and/or the cold pool depth (e.g., 
Olson, Kenyon, Djalalova, et al., 2019; Pichugina, Banta, Bonin, et al., 2019; Pichugina, Banta, Alan Brew-
er, et al., 2020; Wilson & Fovell, 2016; Zhong et al., 2001). It is clear from these results that improvement 
in the representation of cold-pool dynamics is not possible by changing the parameter values used in the 
MYNN-EDMF parameterization, which is consistent with the results of Lu and Zhong (2014). There were 
also many more instances of poor data quality during the wintertime, which could contribute to the poorer 
agreement between the observations and the simulations.

4.2. Comparison of PPE Simulations With Previous Studies

Previous studies (Berg et al., 2019; Yang, Berg, et al., 2019; Yang, Qian, et al., 2017) focused on the sensitivity 
of simulated turbine-height wind speed to parameter values used in the standard MYNN parameterization. 
They found the greatest sensitivity to TKE dissipation rate, turbulent Prandtl number, turbulence length 
scales, surface roughness, and the von Karman constant. As described in Section 3, three additional pa-
rameters associated with the EDMF treatment have been added in this study. The generalized linear model 
(McCullagh & Nelder, 1989) was adopted to decompose the total variances from the 128 PPEs members 
completed with varying parameters into the contributions from each parameter as well as their interactions. 
The target variable V (i.e., wind speed here) is written as a function of input parameters in a fitting equation,

      
  

           2
0 ,

1 1 1
, 0, ,

n n n

j j j k j k
j j k

V P P P N (4)

where   1, ,jP j n  are input parameters; n is the number of parameters; 0 represents the intercept co-
efficient;  j and  ,j k are the coefficients of linear and interaction terms;   is the residual, which is assumed 
to follow an independent normal distribution and have zero mean. In this study, quadratic terms ( j k, i.e., 

2
jP ) are also included in the generalized linear model. The generalized linear model can be used in situa-

tions where either a linear or nonlinear model is valid and requires a single set of PPE simulations perturb-
ing all parameters simultaneously, which reduces the number of simulations compared to approaches that 
perturb one parameter at a time and allows for the study of interactions among parameters. Other studies, 
such as those of Nielsen-Gammon et al. (2010) and Shi et al. (2014), used a combination of single-parameter 
and multiparameter approaches to determine the impact of individual parameters relative to the others and 
how large an impact the selection of parameters might have. The successful application of their approaches 
depends on the linearity between the parameters and model output (Shi et al., 2014). Besides, contributions 
of parameter interactions were not considered in their studies. The WRF model has a high degree of com-
plexity and strong nonlinearities, therefore, the generalized linear model is applied in this study.

The generalized linear model builds a fitting equation and calculates the determination coefficient (R2) of 
model fitness, as well as the statistical significance of the estimated coefficient and interpreted variance 
associated with each term in the fitting equation. The reduction in the sum of the square of residual caused 
by sequentially introducing each term, including linear, higher order, and interaction terms, is used to com-
pute the relative contribution of individual parameters and their interactions.

The total variance of the WRF output (i.e., the turbine-height wind speed) into the contribution from differ-
ent parameters on August 22 for the simulation with 2 days duration is shown in Figure 4. In general, the 
results show greater sensitivities to the parameters associated with the standard MYNN parameterization 
than the parameters added for the EDMF representation (cσ, αconv, and cε). The relatively small impact as-
sociated with for cσ and αconv, is not surprising as they are only active in cloudy conditions, and boundary 
layer clouds were infrequent during the study periods. There is sensitivity to cε, during the daytime when 
the mass-flux component of the EDMF parameterization is active and its sensitivity is largest in a fully de-
veloped convective boundary layer when the EDMF plumes are active. This behavior will be revisited again 
and explored in more detail in Section 4.4 looking at the diurnal evolution. When nighttime conditions are 
considered the values of Pr, α1, α5, ZF and K have the largest impact on the wind speed, which is consistent 
with previous results of Yang et al. (2017) and Berg et al. (2019) (not shown) and are very similar to the 
winter results described next.
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During the winter case study, the meteorological conditions at the start of the study period were marked 
by the frontal passage and associated cloud cover. After the frontal passage on January 11, conditions were 
dominated by persistent cold pools, clear skies, and generally weak winds (Figure 3) consistent with stable 
conditions. Results from the daytime on January 15 for the simulation of 2 days duration (Figure 5), are 
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Figure 4. Fraction of the variance of turbine-height wind speed explained by each parameter in Table 1 for August 22, 2016 (simulation of 2 days duration) 
during daytime. Lines indicate terrain elevations of 500 (thin) and 1,000 m (thick). Numbers on the top-right corner of each panel indicate the variance 
explained by each parameter.
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similar to the results from the summer nights (not shown). The sensitivity to Pr remains large, and there is 
an increase in sensitivity to α5, which is only applied in stable conditions, likewise there is a large decrease 
in sensitivity to α4 as it is only applied in unstable conditions. In addition, we expect the EDMF treatment to 
be less active in stable conditions and the reduced sensitivity to these parameters is found during the winter 
case. During the wintertime case there is also very little difference in the parameter sensitivity with day or 
night, which is consistent with persistent stable conditions over the diurnal cycle (not shown).
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Figure 5. Same as Figure 4 but for January 15, 2017 (simulation of 2 days duration).



Journal of Geophysical Research: Atmospheres

The differences seen in Figures 4 and 5 can be related to differences in wind speed in addition to differences 
in stability. The period around August 22 is marked by strong simulated winds ranging between 6.5 and 
13 m s−1, while the period on January 15 has much weaker simulated winds ranging between 2.8 and 7.3 m 
s−1. Previous studies have shown how parameter sensitivities change with wind speed. To investigate the 
sensitivity to wind speed directly, the standardized range in wind speed caused by parameter perturbations is 
computed as a function of the domain average wind speed for the summer period (Figure 6). Similar results 
were found for the winter period (not shown). To compute the standardized range the results are divided 
into six discrete bins over the range of parameter values. The wind speed range is defined as the difference 
between the bins associated with the largest (bin 6) and smallest (bin 1) parameter values. This approach 
is similar to that used by Yang et al. (2017). The range of the domain average wind speed from each time 
(145 values in the 6 days simulation) are divided into 8 bins according to the ensemble mean wind speed. 
The mean range of the wind speed is standardized by dividing it by the mean ensemble standard devia-
tion for each wind speed bin. The results show a large sensitivity to Pr for all wind speeds (Figure 6). Yang 
et al. (2017) showed strong sensitivity to Pr for both wind speeds less than 3 m s−1 and greater than 13 m s−1, 
but found little sensitivity to Pr during unstable conditions, thus the large sensitivities seen in Pr here is like-
ly due to increased sensitivity at night rather than the differences in wind speed in the two cases. Likewise, α5 
is only active in stable conditions and it is found to explain 2.9% of the total variance for the summer period 
(Figure 4) compared to 14.7% of the variance for the winter period with relatively weak winds (Figure 5). 
The standardized range of wind speed associated with α5 is found to increase with wind speed (Figure 6e). 
Therefore, the increased sensitivity to α5 in winter compared to summer is mainly due to more frequent sta-
ble conditions in winter, rather than the sensitivity to wind speed. The sensitivity to Zf and K are found to be a 
function of the wind speed with larger values of wind speed leading to larger differences in the standardized 
range of wind speed but are largely independent of stability, consistent with the results of Yang et al. (2017).

There is a significant amount of spatial variability observed on August 22 and January 15, as shown in Fig-
ures 4 and 5. For example, during the daytime in the summer the amount of variance associated with Pr is 
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Figure 6. Response (bin 6 – bin 1 differences) of wind speed for the nine most influential parameters over different wind speed ranges for the summer case 
(August 18–24, 2016).
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smaller over the Cascade Mountains and along the eastern edge of the Columbia Basin. The sensitivity to 
α1 follows a different pattern with a relatively large impact over the higher elevations. At first glance these 
results seem to contradict the results of Yang et al. (2017), who showed little variability of the sensitivity 
to Pr and α1 as function of terrain slope. It is important to note, however, that their results were computed 
from a month-long simulation while the results presented here are for a much shorter time period. Over the 
6 days analysis period, the day-to-day variability in the sensitivity is large and the apparent dependence on 
the terrain elevation is much reduced if averaged over the period (not shown).

The results presented here show a much reduced sensitivity to B1 than reported by Yang et al. (2017) and 
Berg et al. (2019). In this study, the range of B1 was reduced to be 18–30 compared to the range of 12 and 36 
used by Yang et al. (2017) and Berg et al. (2019), who selected the range to be ±50% from the default value 
in WRF. Other recent studies have used different ranges of B1 and tended to look at smaller values of B1, 
using ranges between 12 and 24 (Jahn et al., 2017; Muñoz-Esparza et al., 2018), or the default value of 24 
used in WRF (Bodini et al., 2020). This change in the range of values in B1 leads to a decreased sensitivity of 
the results to changes in B1 compared to the earlier studies.

4.3. Change in Parameter Sensitivity as a Function of Simulation Duration

One goal of this study is to investigate the impact of parameter uncertainty as a function of simulation dura-
tion for conditions on August 22 and January 15. As shown in Figure 7, the mean simulated turbine-height 
wind speed on August 22 is nearly identical for simulation durations of 2 or 6 days (with domain means 
of 6.8 compared to 6.6 m s−1), and very little pattern to the differences. Likewise, the standard deviation of 
turbine-height wind speed increases slightly for simulation durations of 2 and 6 days (0.3 compared to 0.2 m 
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Figure 7. Daily mean wind speed (top) and inter-member standard deviation (bottom; colors) on August 22, 2016 for a simulation duration of 2 days (left) and 
the difference in wind speed for durations of 2 and 6 days (right). Lines indicate terrain elevations of 500 (thin) and 1,000 m (thick).
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s−1 for a simulation duration of 2 days). The spatial pattern in the wind speed is also consistent across dif-
ferent days with relatively large wind speeds and standard deviations associated with topographic features 
and smaller wind speeds and standard deviations in many of the low-lying areas. There are some minor 
changes in the spatial distribution of the standard deviation, with larger values generally found in parts of 
the domain with higher elevation for a simulation duration of 6 days (Figure 7). The small changes in the 
standard deviation as a function of simulation duration is likely associated with the relatively small domain 
used in the study, meaning that the results are tightly constrained by the boundary conditions.

Similar to the results for summer, the mean and standard deviation does not change with simulation dura-
tions for January 15 (Figure 8). As is the case for summer, the largest mean values are generally associated 
with higher elevations, and relatively small values in the low-lying areas of the domain. For the winter 
cases, however, the sensitivity over the Cascade Mountains in the western part of the domain are more 
pronounced and can be explained in part by the need for longer simulations for the ensembles to become 
stable. In addition, much of the variability in the winter case can be associated with the value of Pr and 
α5 (Figure 5). The sensitivity to Pr, which Yang et al.  (2017) showed, increases some with terrain slope. 
Likewise, the results shown in Figure 5 show large values of α5 in the same areas as the large amounts of 
variances shown in Figure 7d.

At first glance the tight constraint on the simulations might be construed as a weakness of the study, and 
indeed use of a larger domain could lead to a larger range in the PPE values. Alternatively, the study could 
have been constructed to more closely follow a forecasting procedure in which subsequent forecasts are 
started with initial and boundary conditions generated at later times. This approach, however, would convo-
lute the relative impact of the initial and boundary conditions with the parameter uncertainty and make it 
more difficult to quantify the impact of the parameter uncertainty alone. In addition, Pichugina et al. (2019) 

BERG ET AL.

10.1029/2020JD034000

12 of 19

Figure 8. Same as Figure 7 but for January 15.
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found that errors using the HRRR did not increase with time over the 15 h duration of the forecast, which 
they attributed to the strong influence of the topography in this area.

The negligible changes in standard deviations highlighted in Figures 7 and 8 is borne out in an analysis 
of the time series of averaged observed and simulated wind speed (Figures 2 and 3). In these figures, the 
width of the blue lines represents the range in the means from the various members of the PPE from the 
longest simulation period, and the width of the orange lines show range of means from the PPE for time 
series from progressively longer durations. In the summer case the orange lines overlap the blue lines after 
approximately the first 8–19 h of the simulation. In contrast to the summer, it takes approximately 17–24 h 
for the winter simulation curves to overlap. There are also additional periods, for example on January 14 
and 15, in which the orange curve is noticeably below the blue curve, suggesting weaker constraints on the 
winter simulations.

4.4. Dependence on Diurnal Cycle

The previous section described the results as a function of simulation period and highlighted that the en-
semble spread of the PPE stopped growing after a relatively short period. The simulation with 6 days du-
rations in this study also provides an opportunity to examine the diurnal cycle of sensitivity to parameter 
values used in the MYNN-EDMF parameterization and how the sensitivity changes over the study period. 
As in Section 4.2, the generalized linear model (McCullagh & Nelder, 1989) was constructed using the sim-
ulation results to decompose the total variance of the WRF outputs (i.e., the turbine-height wind speed) into 
the contribution from different parameters.

Yang et al. (2017) and Berg et al. (2019) documented differences in parameterization sensitivity as a func-
tion of time of day, which corresponded to the application of different parameters in the boundary layer pa-
rameterization as a function of the atmospheric stability. Consistent results are found in this study. During 
the summer there is enhanced sensitivity to B1, α4, β, cε, and ZF during the day (nominally 14:00–2:00 UTC) 
(Figure 9). In contrast to the summer, the winter period is marked by a weaker diurnal cycle that is similar 
to the nighttime summer results. There are only limited periods near solar noon during which the param-
eters associated with convective boundary layers are important, and it is clear the mass-flux component of 
the EDMF parameterization is rarely triggered so there is little sensitivity to those parameters during winter. 
It is also interesting to note that the interactions of the various parameters, as indicated by the white areas 
in Figure 9 is generally quite small, although the interaction also follows a diurnal cycle with larger values 
found during the day. There is also a large variance at the start of the winter study period, which is associ-
ated with a frontal passage through the study domain. During the summer the variance tends to be larger 
at night, which is partially associated with flow over and around the topography during stable conditions 
(not shown).

The results presented in Figure 9 show the dependence of the turbine-height wind speed on the various 
parameters. The sensitivity, however, is also found to vary with height (Figure 10) in ways that are consistent 
with Yang et al. (2017) and Berg et al. (2019). During the daytime, the sensitivity to Pr, cε, and ZF decreases 
rapidly with height, while the sensitivity to B1 and α4 increases below approximately 300 m. Above that alti-
tude, B1 decreases and α4 remains nearly constant. Results presented by Berg et al. (2019) also showed that 
the sensitivity to Pr tended to be larger when then sensitivity to B1 is smaller. The sensitivity to β increases 
rapidly with height from the surface to approximately 600 m, and then increases more slowly. The increased 
sensitivity to α4 and β with height is likely due to their impact on the length scales that change as function 
of altitude. The decrease in sensitivity to cε could be due to changes in difference between the ambient air 
and plume properties and changes in the updraft velocity with height.

The parameter sensitivity can also be examined as a function of normalized height (height above ground di-
vided by the height of the convective boundary layer as determined in the MYNN-EDMF parameterization). 
This approach provides additional insight as the depth of the convective boundary layer changes through-
out the day. The primary difference found viewing the results in this way, is a more constant dependence on 
B1 over the depth of the convective boundary layer, increased sensitivity to Pr near the boundary layer top, 
and slightly larger sensitivity to the interactions between different parameters, particularly near the surface 
and at the top of the convective boundary layer. The sensitivities at night are also dependent on height, with 
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the sensitivity to Pr decreasing with height to an altitude of 400 m and then increasing for heights between 
400 and 1,200 m, and decreasing sensitivity to α5 with height. The decreases in the sensitivity with height is 
also consistent with the results presented by Yang et al. (2017). The nighttime sensitivity to cε is very small 
near the surface and slowly increases with height. The EDMF parameterization is generally inactive at night 
so the sensitivity is the result of periods earlier in the day when the EDMF parameterization was active.

The sensitivity to the parameters associated with the EDMF parameterization during the daytime increases 
through the six-day simulation period, as highlighted in Figure 9. Two reasons for the increased sensitivity 
is the steady increase in the fraction of the domain in which the mass-flux component of the parametri-
zation is active (non-gray areas in Figure 11), and an increase in the EDMF updraft area (assumed to be 
the fraction of the grid box covered with convective updrafts determined in the parameterization) in the 
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Figure 9. Fraction of the variance of turbine-height wind speed explained by each parameter as a function of time of day for each parameter during summer 
(top) and winter (bottom) for the simulation of 6 days duration across the entire simulation domain (colors). Int indicates the contribution of parameter 
interactions. Small panels indicate the total variance, as well as daytime (white) and nighttime (gray) conditions.
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WRF grid box during the simulation period (note that the maximum fractional area allowed in the EDMF 
is 10%). An alternate approach to examining the sensitivity to the EDMF parameters is to see how the 
parameter sensitivity changes as a function of EDMF updraft area (Figure 12). First, the values of modeled 
turbine-height wind speed were grouped according to the updraft area found over the time period 12:00–
20:00 local time. Second, we applied a generalized linear model to calculate the variance contribution by 
different parameters for each bin. In this case, an EDMF updraft fractional area of 0 applies to grid columns 
were the mass-flux component of the EDMF parameterization is not active. When the convective plume 
representation is inactive and the MYNN-EDMF parameterization reverts back to the standard MYNN ed-
dy-diffusivity mode, the results are most sensitive to K by a wide margin, followed by ZF and Pr, which is 
consistent with results shown in Figure 2. As the updraft fraction increases, however, the sensitivity to K 
decreases significantly, sensitivity to Pr decreases slightly, while the sensitivity to ZF and α4 increases. The 
sensitivity to the surface roughness is due, at least in part, to the application of the Deardorff convective 
velocity scale in some of the EDMF calculations that maintains a sensitivity to the surface conditions. At 
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Figure 10. Fraction of variance explained by each parameter as a function of height (left and right panels) or normalized height (center) during daytime (left 
and center) and nighttime (right) during the summer for the simulation of 6 days duration across the entire simulation domain (colors).

Figure 11. Updraft area computed from the EDMF part of the MYNN-EDMF parameterization for a simulation using the default parameter settings. Values 
are averaged from the surface to 1 km above ground and from 12:00 to 20:00 local time during the summer case study period. Gray indicates 0% updraft area.
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large values of the updraft area (8%–10%) the sensitivity to cε increases significantly and becomes dominant. 
The sensitivity to cε when the updraft fraction is 0 is due to memory in the system from earlier time periods 
during which the mass-flux component was active.

5. Summary and Conclusions
This study investigates the sensitivity of wind speed, and particularly turbine-height wind speed, to the 
selection of parameter values in the MYNN-EDMF parameterization implemented in WRF by perturbing 
11 parameters and constructing PPE for two different time periods, one in summer and one in winter, with 
relatively strong wind speeds during the summer and generally weaker winds in the winter. The parameters 
include those identified in earlier studies that contributed to the sensitivity in turbine-height wind speed 
for the standard MYNN parameterization as well as three parameters identified from the EDMF part of the 
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Figure 12. Fraction of the variance of turbine-height wind speed explained by each parameter (colors and numbers in boxes) as a function of EDMF updraft 
area on August 22, 2016. Box at the top shows the fraction of the domain with that EDMF updraft area.
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parameterization. In addition to the parameters identified in earlier studies that make large contributions 
to the sensitivity of the turbine-height wind speed, namely K, ZF, Pr, and α4, the results are found to be 
sensitive to the entrainment parameter, cε, during unstable conditions with large EMDF updraft fraction. 
The sensitivity to some parameters, α5, ZF, and K, were also found to increase with increasing wind speed. 
Not surprisingly, the PPE mean and standard deviation are insensitive to the EDMF parameters at night or 
during the winter, which is consistent with stable conditions. It is important to keep in mind, however, that 
the periods and simulations used in this analysis were generally cloud free so that sensitivity to the cloud 
parameters in the EDMF could be underestimated.

The PPEs were constructed to be of different durations, ranging from 2 to 6 days (all ending on the same 
day) to investigate how the parameter sensitivity changes with the duration. The parametric sensitivity is 
found to be insensitive to the length of the simulation after an initial period of 8–19 h in the summer and 
17–24 h in the winter. This behavior suggests that the growth in the spread is associated with relatively fast 
processes in the model that are ultimately constrained by the boundary conditions and/or topography.

Analysis of the 6 days PPE allows the investigation of how the sensitivity to various parameters changes 
over the simulation period. These changes are associated with changes over the diurnal cycle and associ-
ated cycle of atmospheric stability, as well as systematic changes over the duration of the simulation. The 
sensitivity in the simulated turbine-height wind speed is found to change as a function of the convective 
updraft area in the mass-flux component of the EDMF scheme. During cases with large updraft areas the 
sensitivity to cε is larger than the sensitivity to any other parameters in the MYNN-EMDF parameterization. 
Similar to earlier analyses, the parameter sensitivity changes with the time of day as the stability changes. 
The sensitivity to cε suggests the need for additional research to more tightly constrain this parameter, or to 
determine if it should be a function of space and time rather than uniformly prescribed over the domain, 
which could have an impact on wind energy related forecasts.

The results presented in this study show the sensitivity of hub-height wind speed to a number of different 
model parameters. There are a number of important implications associated with this work. First, identifi-
cation of parameters with the largest impact on the wind speed can be used to target future development of 
the MYNN-EDMF parameterization to those parts of the scheme that have the largest impact on the results, 
such as an improved representation of Pr. Second, the sensitivity to ZF suggests the need for better estimates 
of the surface roughness that are truly representative of local conditions. Third, it provides guidance that 
can be applied in field studies to better constrain those parameters that have the largest impact on the re-
sults. For example, a field study or analysis of a wider range of large-eddy simulation could be conducted to 
better constrain α4. Finally, the study highlights the temporal variability of the parametric uncertainty that 
can be used by those working to provide uncertainty estimates for day-ahead forecasts of the wind resource.

Data Availability Statement
Data used in this manuscript are available from the Atmosphere to Electron Data Archive and Portal 
(https://a2e.energy.gov/about/dap).
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